1. The probability of the symptom A is 25% and the probability of the symptom B (which occurs independently on the symptom A) is 60%. What is the probability that both symptoms are observed in a patient?
 a) less than 25% +
 b) between 50% and 75% -
 c) between 25% and 50% -
 d) more than 75% -

2. A sphere has been enlarged, such that its surface area increased by a factor of 3. Its volume increased by a factor of
 a) 5.2 +
 b) 3 -
 c) 9 -
 d) 1.7 -

3. A curve is described by the equation \(x^2 + y^2 + 2x + 4y + 1 = 0 \). What is it?
 a) a circle +
 b) a parabola -
 c) an ellipse -
 d) a hyperbola -

4. The function \(f(x) = x \cos(x) \) is:
 a) odd +
 b) neither even, nor odd, nor monotonic -
 c) monotonic -
 d) even -

5. What is the distance between points A=[-5,0,3] and B=[0,5,0]?
 a) 7.7 +
 b) 5.3 -
 c) 12.6 -
 d) 3.5 -

6. How many solutions of the equation \(3x^2 + 5 \) are there in domain \(\mathbb{R} \)?
 a) none +
 b) 2 -
 c) 4 -
 d) 1 -

7. Find the center \(C \) of a circle given by the equation \(x^2 + y^2 -8x + 6y + 9 = 0 \).
 a) \(C = [4; -3] \) +
 b) \(C = [-3; 2] \) -
 c) \(C = [2; -4] \) -
 d) \(C = [1; 1] \) -

8. Choose the correct statement for the function \(f(x) = (x - 3)(x + 2) \) on the interval \([-5, 2]\)
 a) \(f(x) \) has minimum value at \(x = 0.5 \) +
 b) \(f(x) \) has maximum value at \(x = 0 \) -
c) $f(x)$ has minimum value at $x = -5$ -
d) $f(x)$ has maximum value at $x = 2$ -

9. What is the domain of function $f(x) = \log_2 \left(\frac{5}{|x-5|} \right)$?
 a) all real numbers except 5 +
 b) all positive real numbers except 5 -
 c) all positive real numbers -
 d) all real numbers -

10. What is the range of function (the set of all value of the function) $f(x) = 4 \cos \left(\frac{x}{4} \right)$?
 a) $(-4; 4)$ +
 b) $\left(-\frac{1}{4}; \frac{1}{4} \right)$ -
 c) $(-1; 1)$ -
 d) $(-\infty; \infty)$ -

11. How many combinations of 5 different alphanumeric characters (repetition is not allowed) are there? Alphanumeric is a combination of alphabetic (26, case insensitive) and numeric characters.
 a) 376,992 +
 b) approx. 60.5 millions -
 c) approx. 45.2 millions -
 d) 658,008 -

12. What is the sum of the 1st and 6th term of an arithmetical sequence if the sum of first 6 terms of this arithmetical sequence is 30?
 a) 10 +
 b) 12 -
 c) 6 -
 d) 5 -

13. There are 6 black and 4 white balls in a bowl. What is the probability P that at least one of two randomly picked balls is white?
 a) 50% ≤ P < 100% +
 b) 100%, at least one of picked balls must be white -
 c) 0% < P < 50% -
 d) 0%, both balls must be black -

14. What is the 1st term of a geometric sequence if the 3rd term is 5 and 5th term is 25?
 a) 1 +
 b) −15 -
 c) −5 -
 d) $\sqrt{5}$ -
15. Simplify the expression: \(\frac{a^{-3}b^3}{\sqrt{a^{-4}b^6}} \log_a a^4 \)

a) \(\frac{4}{a} \) +

b) \(\frac{b}{a} - 4 \) -

c) \(a b^{-3} \) -

d) \(a + 4 + b \) -

16. Choose the smallest integer constant \(b \) so that the quadratic equation \(3x^2 + bx + 1 = 0 \) has two real solutions:

a) 4 +

b) 1 -

c) 2 -

d) 3 -

17. What is the solution of the inequality \(\frac{2|x - 3|}{3} > 4 \)

a) \((-\infty, -3) \cup (9, \infty) \) +

b) \((-\infty, -3) \cup (3, \infty) \) -

c) All real numbers except -3 a 3 -

d) \(-3, 3\) -

18. What is the length of leg (cathetus) of an isosceles right-angled triangle (i.e. both legs - catheti - are equal) whose area is 25?

a) \(5\sqrt{2} \) +

b) \(2\sqrt{5} \) -

c) 10 -

d) \(\sqrt{10} \) -

19. Which of the following vectors is perpendicular to the vector \(u = (2, 3) \)

a) (-3, 2) +

b) (2, 0) -

c) (3, 0) -

d) (3, 2) -

20. If \(\pi < \alpha < 2\pi \) and \(\sin(\alpha) = -0.37 \) what is the value of \(\sin(\alpha - \pi) \)?

a) 0.37 +

b) \(\cos \alpha \) -

c) \(-\cos \alpha \) -

d) -0.37 -

21. The original statue is 1.5 m high. An enlarged copy of that statue is 3 m high. What is the ratio of the volume of the original statue to the volume of its enlarged copy?
a) 1:8 +
b) 1:4 -
c) 1:2 -
d) 2:3 -

22. Volume of a cone is given by the formula:
 a) \(\frac{1}{3} \pi h r^2 + \)
b) \(\pi h r^2 - \)
c) \(\pi h r - \)
d) \(\frac{1}{2} h r^2 - \)

23. Let \(C \) be a circle circumscribing a square \(S \). Then the area ratio \(C/S \) of the circumscribed circle \(C \) and the square \(S \) is:
 a) \(\frac{\pi}{2} + \)
b) \(\frac{3}{2} - \)
c) \(\frac{\sqrt{2}}{2} - \)
d) \(\pi - \)

24. What is the total surface area of a sphere if its volume is \(10\pi \)?
 a) \(15.3\pi + \)
b) \(12 - \)
c) \(2.5/\pi - \)
d) \(10/\pi - \)

25. Let \(i \) is the imaginary unit defined as \(i^2 = -1 \). Simplify the expression of \(-1 + i^1\)
 a) \(-1 - i + \)
b) \(0 - \)
c) \(-1 - \)
d) \(-1 + i - \)

26. What is the volume of the cylinder with a radius of 3 and a height of 7?
 a) \(63\pi + \)
b) \(21 - \)
c) \(441 - \)
d) \(42\pi - \)

27. What is the sum of all even numbers from 20 to 100?
 a) \(2460 + \)
b) \(4000 - \)
c) \(2400 - \)
d) \(4800 - \)

28. What is the solution of the inequality \(\log_{10}(1 - 4 x) \geq 0 \)?
 a) \((-\infty; 0) + \)
b) \((-1;4] - \)
c) \((-\infty; \infty)\) -

d) \(\left(0; \frac{1}{4}\right)\) -

29. Each interior angle in a regular hexagon is

a) 120° +
b) 60° -
c) 108° -
d) 136° -

30. What is the smallest period of the function \(f(x) = 2\sin(3x)\)?

a) \(\frac{2\pi}{3}\) +
b) \(\frac{3\pi}{2}\) -
c) \(\pi\) -
d) \(\frac{3}{2}\) -